VConf is a powerful and flexible conformational search application which processes an SD file of drug-like compounds containing an initial 2D or 3D conformation of each molecule. It provides for two major modes of operation:
Command-line options provide detailed user control, including:
The method begins by removing small disconnected molecular fragments from the input molecule and adding missing hydrogens or formal charges. Vconf then detects ring systems and draws multiple low-energy conformations of each ring system from a dynamic ring database or uses Tork to quickly build conformations of rings not already in the database. Multiple starting conformations of the molecule are then built around these rings and relaxed by a brief Monte Carlo run followed by energy minimization. In “prep” mode, the calculation is stopped at this point. In “search” mode, the resulting structures are used to initiate Tork searches to generate a range of low-energy conformations. As described in the first citation below, Tork uses normal modes in internal coordinates to efficiently identify productive directions for the conformational search. The conformations thus generated are checked for correct chirality, and cis/trans conformations at double bonds. Finally, repeat conformations are eliminated, correcting for symmetries, and the successful conformations are written to output. Energies are based upon a tuned version of the Dreiding force field, with VeraChem’s partial atomic charges (see VCharge) and a distance-dependent dielectric model.
The MS Windows version of Vconf includes a convenient graphical user interface that facilitates assigning parameters, running Vconf, and viewing its results. The interface brings together Vconf, our molecular display program VDisplay, and helpful Vconf support utilities, as shown in the following screen-shots. (Click images for full-sized views)
Chang, C.-E. and M. K. Gilson (2003). “Tork: Conformational analysis method for molecules and complexes.” Journal of Computational Chemistry 24(16): 1987-1998. DOI: 10.1002/jcc.10325
Chen, W., J. Huang, and M. K. Gilson (2004). “Identification of symmetries in molecules and complexes.” Journal of Chemical Information and Computer Sciences 44(4): 1301-1313. DOI: 10.1021/ci049966a
David, L., R. Luo, and M. K. Gilson (2001). “Ligand-receptor docking with the Mining Minima optimizer.” J. Comput. Aided Mol. Des. 15: 157-171. DOI: 10.1023/A:1008128723048
Figueras, J. (1996). “Ring perception using breadth-first search.” Journal of Chemical Information and Computer Sciences 36(5): 986-991. DOI: 10.1021/ci960013p
Gilson, M. K., H. S. R. Gilson, and M. J. Potter (2003). “Fast assignment of accurate partial atomic charges: An electronegativity equalization method that accounts for alternate resonance forms.” J. Chem. Inf. Comput. Sci. 43: 1982-1997. DOI: 10.1021/ci034148o
Kairys, V. and M. K. Gilson (2002). “Enhanced docking with the mining minima optimizer: acceleration and side-chain flexibility.” J. Comput. Chem. 23: 1656-1670. DOI: 10.1002/jcc.10168
Mayo, S. L., B. D. Olafson, W. A. Goddard III (1990). “DREIDING: A generic force field for molecular simulations.” J. Phys. Chem. 94: 8897-8909. DOI: 10.1021/j100389a010
VeraChem’s state of the art computational chemistry software is capable of protein-ligand and host-guest binding affinity prediction, fast calculation of accurate partial atomic charges for drug-like compounds, computation of energies and forces with empirical force fields, automatic generation of alternate resonance forms of drug-like compounds, conformational search with the powerful Tork distort-minimize algorithm, and automatic detection of topological and 3D molecular symmetries.
VeraChem LLC
12850 Middlebrook Rd Ste 205
Germantown
MD 20874-5244
Voice: 240-686-0565
Fax: 240-686-0564
General e-mail:
vc@verachem.com
Commercial licensing:
sales@verachem.com
Customer support:
support@verachem.com